Search results
Results from the WOW.Com Content Network
Mixtures can be either homogeneous or heterogeneous: a mixture of uniform composition and in which all components are in the same phase, such as salt in water, is called homogeneous, whereas a mixture of non-uniform composition and of which the components can be easily identified, such as sand in water, it is called heterogeneous.
In chemistry, a suspension is a heterogeneous mixture of a fluid that contains solid particles sufficiently large for sedimentation. The particles may be visible to the naked eye, usually must be larger than one micrometer, and will eventually settle, although the mixture is only classified as a suspension when and while the particles have not ...
For example, the long-known sugar glucose is now systematically named 6-(hydroxymethyl)oxane-2,3,4,5-tetrol. Natural products and pharmaceuticals are also given simpler names, for example the mild pain-killer Naproxen is the more common name for the chemical compound (S)-6-methoxy-α-methyl-2-naphthaleneacetic acid.
A heterogeneous mixture is a mixture of two or more compounds. Examples are: mixtures of sand and water or sand and iron filings, a conglomerate rock, water and oil, a salad, trail mix, and concrete (not cement). [12] A mixture can be determined to be homogeneous when everything is settled and equal, and the liquid, gas, the object is one color ...
An example in liquids is the miscibility of water and ethanol as they mix in all proportions. [1] By contrast, substances are said to be immiscible if the mixture does not form a solution for certain proportions. For one example, oil is not soluble in water, so these two solvents are immiscible
For example, water is composed of two hydrogen atoms bonded to one oxygen atom: the chemical formula is H 2 O. In the case of non-stoichiometric compounds , the proportions may be reproducible with regard to their preparation, and give fixed proportions of their component elements, but proportions that are not integral [e.g., for palladium ...
However mixtures can have different properties from the individual components. One familiar example is the mixture of fine sand with water used to make sandcastles. Neither the sand on its own nor the water on its own will make a sand-castle but by using physical properties of surface tension, the mixture behaves in a different way.
Some mixtures will readily form solid solutions over a range of concentrations, while other mixtures will not form solid solutions at all. The propensity for any two substances to form a solid solution is a complicated matter involving the chemical, crystallographic, and quantum properties of the substances in question.