Search results
Results from the WOW.Com Content Network
Benzene can be easily converted to chlorobenzene by nucleophilic aromatic substitution via a benzyne intermediate. [1] It is treated with aqueous sodium hydroxide at 350 °C and 300 bar or molten sodium hydroxide at 350 °C to convert it to sodium phenoxide , which yields phenol upon acidification. [ 2 ]
The main steps in this process are the production of chlorobenzene from benzene, hydrochloric acid and oxygen, and the subsequent hydrolysis of chlorobenzene to phenol. [4] The first step uses either a copper or iron chloride catalyst and exposes the materials to air at 200–250 °C.
Via the Hock rearrangement, cyclohexylbenzene hydroperoxide cleaves to give phenol and cyclohexanone. Cyclohexanone is an important precursor to some nylons. [8] Starting with the alkylation of benzene with mixture of 1 and 2-butenes, the cumene process produces phenol and butanones. [5]
Dow process (phenol), a method of phenol production through the hydrolysis of chlorobenzene Topics referred to by the same term This disambiguation page lists articles associated with the title Dow process .
Like most azobenzenes, Solvent Yellow 7 can be synthesized by the reaction of the phenyldiazonium salt with phenol.The optimal pH value for this azo coupling is 8.5-10. The reaction is carried out in water, since sodium chloride (or potassium chloride) formed in the reaction is soluble in water, while the product precipitates.
Phenol (also known as carbolic acid, phenolic acid, or benzenol) is an aromatic organic compound with the molecular formula C 6 H 5 OH. [5] It is a white crystalline solid that is volatile . The molecule consists of a phenyl group ( −C 6 H 5 ) bonded to a hydroxy group ( −OH ).
Phenol is readily alkylated at the ortho positions using alkenes in the presence of a Lewis acid such as aluminium phenoxide: [citation needed] CH 2 =CR 2 + C 6 H 5 OH → R 2 CHCH 2-2-C 6 H 4 OH. More than 100,000 tons of tert-butyl phenols are produced annually (year: 2000) in this way, using isobutylene (CH 2 =CMe 2) as the alkylating agent.
The half-sandwich complex in the Dötz reaction can be demetallated to give corresponding aryl product, or it could be further employed for a nucleophilic addition to aromatic system strategy for synthesis of fully-substituted benzene ring. [14] The Dötz reaction has been employed in the syntheses of natural products, as illustrated below. [15 ...