Search results
Results from the WOW.Com Content Network
The MOT cloud is loaded from a background of thermal vapour, or from an atomic beam, usually slowed down to the capture velocity using a Zeeman slower. However, the trapping potential in a magneto-optical trap is small in comparison to thermal energies of atoms and most collisions between trapped atoms and the background gas supply enough ...
Gas flow can be grouped in four regimes: For Kn≤0.001, flow is continuous, and the Navier–Stokes equations are applicable, from 0.001<Kn<0.1, slip flow occurs, from 0.1≤Kn<10, transitional flow occurs and for Kn≥10, free molecular flow occurs. [6] In free molecular flow, the pressure of the remaining gas can be considered as effectively ...
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]
The dashed lines represent parts of isotherms which are forbidden since the gradient would be positive, giving the gas in this region a negative compressibility. Above the critical point there exists a state of matter that is continuously connected with (can be transformed without phase transition into) both the liquid and the gaseous state.
In other words, the configuration of particle A in state 1 and particle B in state 2 is different from the case in which particle B is in state 1 and particle A is in state 2. This assumption leads to the proper (Boltzmann) statistics of particles in the energy states, but yields non-physical results for the entropy, as embodied in the Gibbs ...
The thickness of the shock wave is comparable to the mean free path of the gas molecules in the flow field. [1] In other words, shock is a thin region where large gradients in temperature, pressure and velocity occur, and where the transport phenomena of momentum and energy are important.
The two particles of the same energy have spin 1 ⁄ 2 (spin up) or − 1 ⁄ 2 (spin down), leading to two states for each energy level. In the configuration for which the total energy is lowest (the ground state), all the energy levels up to n = N/2 are occupied and all the higher levels are empty.
It is not part of the analysis to use r 1, p 1 for particle 1, r 2, p 2 for particle 2, etc. up to r N, p N for particle N. It is assumed the particles in the system are identical (so each has an identical mass m). For a mixture of more than one chemical species, one distribution is needed for each, see below.