enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Verhoeff algorithm - Wikipedia

    en.wikipedia.org/wiki/Verhoeff_algorithm

    Verhoeff had the goal of finding a decimal code—one where the check digit is a single decimal digit—which detected all single-digit errors and all transpositions of adjacent digits. At the time, supposed proofs of the nonexistence [6] of these codes made base-11 codes popular, for example in the ISBN check digit.

  3. Baillie–PSW primality test - Wikipedia

    en.wikipedia.org/wiki/Baillie–PSW_primality_test

    This is only about two out of every million odd integers in this range. However: [1]: 1021 4709 of these 21853 numbers (over 21 percent) are also pseudoprimes to base 3; 2522 of these 4709 numbers (over 53 percent) are pseudoprimes to bases 2, 3, and 5; 1770 of these 2522 numbers (over 70 percent) are pseudoprimes to bases 2, 3, 5, and 7.

  4. Benford's law - Wikipedia

    en.wikipedia.org/wiki/Benford's_law

    This is an accepted version of this page This is the latest accepted revision, reviewed on 17 January 2025. Observation that in many real-life datasets, the leading digit is likely to be small For the unrelated adage, see Benford's law of controversy. The distribution of first digits, according to Benford's law. Each bar represents a digit, and the height of the bar is the percentage of ...

  5. Check digit - Wikipedia

    en.wikipedia.org/wiki/Check_digit

    The final character of a ten-digit International Standard Book Number is a check digit computed so that multiplying each digit by its position in the number (counting from the right) and taking the sum of these products modulo 11 is 0. The digit the farthest to the right (which is multiplied by 1) is the check digit, chosen to make the sum correct.

  6. Luhn algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_algorithm

    The check digit is calculated by (()), where s is the sum from step 3. This is the smallest number (possibly zero) that must be added to s {\displaystyle s} to make a multiple of 10. Other valid formulas giving the same value are 9 − ( ( s + 9 ) mod 1 0 ) {\displaystyle 9-((s+9){\bmod {1}}0)} , ( 10 − s ) mod 1 0 {\displaystyle (10-s){\bmod ...

  7. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    This means that, for n up to 2.5 × 10 10, if 2 n −1 (modulo n) equals 1, then n is prime, unless n is one of these 21853 pseudoprimes. Some composite numbers (Carmichael numbers) have the property that a n − 1 is 1 (modulo n) for every a that is coprime to n. The smallest example is n = 561 = 3·11·17, for which a 560 is 1 (modulo 561 ...

  8. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.

  9. Percent sign - Wikipedia

    en.wikipedia.org/wiki/Percent_sign

    English style guides prescribe writing the percent sign following the number without any space between (e.g. 50%). [sources 1] However, the International System of Units and ISO 31-0 standard prescribe a space between the number and percent sign, [8] [9] [10] in line with the general practice of using a non-breaking space between a numerical value and its corresponding unit of measurement.