Search results
Results from the WOW.Com Content Network
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.
The technique used in creating eigenfaces and using them for recognition is also used outside of face recognition: handwriting recognition, lip reading, voice recognition, sign language/hand gestures interpretation and medical imaging analysis. Therefore, some do not use the term eigenface, but prefer to use 'eigenimage'.
Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit ...
The face recognition system is deployed to identify individuals among the travellers that are sought by the Panamanian National Police or Interpol. [140] Tocumen International Airport operates an airport-wide surveillance system using hundreds of live face recognition cameras to identify wanted individuals passing through the airport.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Such classifiers can be used for face recognition or texture analysis. A useful extension to the original operator is the so-called uniform pattern, [ 8 ] which can be used to reduce the length of the feature vector and implement a simple rotation invariant descriptor.