Search results
Results from the WOW.Com Content Network
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit ...
Face recognition has been leveraged as a form of biometric authentication for various computing platforms and devices; [37] Android 4.0 "Ice Cream Sandwich" added facial recognition using a smartphone's front camera as a means of unlocking devices, [66] [67] while Microsoft introduced face recognition login to its Xbox 360 video game console ...
CMU Sphinx, a group of speech recognition systems developed at Carnegie Mellon University. [67] DeepSpeech, an open-source Speech-To-Text engine based on Baidu's deep speech research paper. [68] Whisper, an open-source speech recognition system developed at OpenAI. [69]
A CMake file is provided and the library is compatible with Windows, Linux and Mac OS X. The library was tested successfully with OpenCV 2.4.10. BGSLibrary includes the original LBP implementation for motion detection [ 12 ] as well as a new LBP operator variant combined with Markov Random Fields [ 13 ] with improved recognition rates and ...
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.
A Tutorial on Face Recognition Using Eigenfaces and Distance Classifiers; Matlab example code for eigenfaces; OpenCV + C++Builder6 implementation of PCA; Java applet demonstration of eigenfaces Archived 2011-11-01 at the Wayback Machine; Introduction to eigenfaces; Face Recognition Function in OpenCV; Eigenface-based Facial Expression ...