Search results
Results from the WOW.Com Content Network
In computing, NaN (/ n æ n /), standing for Not a Number, is a particular value of a numeric data type (often a floating-point number) which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities ...
For example, the following algorithm is a direct implementation to compute the function A(x) = (x−1) / (exp(x−1) − 1) which is well-conditioned at 1.0, [nb 12] however it can be shown to be numerically unstable and lose up to half the significant digits carried by the arithmetic when computed near 1.0.
Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions. When high performance is not a requirement, but high precision is, variable length arithmetic can prove useful, though the actual accuracy of the result may not be known.
This format is a shortened (16-bit) version of the 32-bit IEEE 754 single-precision floating-point format (binary32) with the intent of accelerating machine learning and near-sensor computing. [3] It preserves the approximate dynamic range of 32-bit floating-point numbers by retaining 8 exponent bits , but supports only an 8-bit precision ...
Immediately invoked function expressions may be written in a number of different ways. [3] A common convention is to enclose the function expression – and optionally its invocation operator – with the grouping operator, [4] in parentheses, to tell the parser explicitly to expect an expression.
var x1 = 0; // A global variable, because it is not in any function let x2 = 0; // Also global, this time because it is not in any block function f {var z = 'foxes', r = 'birds'; // 2 local variables m = 'fish'; // global, because it wasn't declared anywhere before function child {var r = 'monkeys'; // This variable is local and does not affect the "birds" r of the parent function. z ...
For instance, 1/(−0) returns negative infinity, while 1/(+0) returns positive infinity (so that the identity 1/(1/±∞) = ±∞ is maintained). Other common functions with a discontinuity at x =0 which might treat +0 and −0 differently include Γ ( x ) and the principal square root of y + xi for any negative number y .
Such a function could be passed into another function expecting an "int → int" function safely; it simply would not use the "float → float" functionality. In a subclassing hierarchy, the intersection of a type and an ancestor type (such as its parent) is the most derived type. The intersection of sibling types is empty.