enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_moment_of_area

    In physics, moment of inertia is strictly the second moment of mass with respect to distance from an axis: =, where r is the distance to some potential rotation axis, and the integral is over all the infinitesimal elements of mass, dm, in a three-dimensional space occupied by an object Q. The MOI, in this sense, is the analog of mass for ...

  3. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.

  4. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    Note on second moment of area: The moment of inertia of a body moving in a plane and the second moment of area of a beam's cross-section are often confused. The moment of inertia of a body with the shape of the cross-section is the second moment of this area about the z {\displaystyle z} -axis perpendicular to the cross-section, weighted by its ...

  5. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  6. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]

  7. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    The second moment of inertia of the universal beam is nine times that of the square beam of equal cross section (universal beam web ignored for simplification) Loads on a beam induce internal compressive, tensile and shear stresses (assuming no torsion or axial loading). Typically, under gravity loads, the beam bends into a slightly circular ...

  8. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition. Bending stiffness of a beam can analytically be derived from the equation of beam deflection when it is applied by a force.

  9. I-beam - Wikipedia

    en.wikipedia.org/wiki/I-beam

    The ideal beam is the one with the least cross-sectional area (and hence requiring the least material) needed to achieve a given section modulus. Since the section modulus depends on the value of the moment of inertia, an efficient beam must have most of its material located as far from the neutral axis as possible. The farther a given amount ...