Search results
Results from the WOW.Com Content Network
If one ear has normal thresholds while the other has sensorineural hearing loss (SNHL), diplacusis may be present, as much as 15–20% (for example 200 Hz one ear => 240 Hz in the other). [citation needed] The pitch may be difficult to match because the SNHL ear hears the sound "fuzzy". Bilateral SNHL gives less diplacusis, but pitch ...
Noise-induced hearing loss (NIHL) is a hearing impairment resulting from exposure to loud sound.People may have a loss of perception of a narrow range of frequencies or impaired perception of sound including sensitivity to sound or ringing in the ears. [1]
The hissing of high voltage transmission lines is due to corona discharge, not magnetism. The phenomenon is also called audible magnetic noise, [1] electromagnetic acoustic noise, lamination vibration [2] or electromagnetically induced acoustic noise, [3] or more rarely, electrical noise, [4] or "coil noise
The acoustic reflex (also known as the stapedius reflex, [1] stapedial reflex, [2] auditory reflex, [3] middle-ear-muscle reflex (MEM reflex, MEMR), [4] attenuation reflex, [5] cochleostapedial reflex [6] or intra-aural reflex [6]) is an involuntary muscle contraction that occurs in the middle ear in response to loud sound stimuli or when the person starts to vocalize.
The superior canal dehiscence can affect both hearing and balance to different extents in different people. [citation needed]Symptoms of the SCDS include: Autophony – person's own speech or other self-generated noises (e.g. heartbeat, eye movements, creaking joints, chewing) are heard unusually loudly in the affected ear
Hyperacusis is an increased sensitivity to sound and a low tolerance for environmental noise. Definitions of hyperacusis can vary significantly; it often revolves around damage to or dysfunction of the stapes bone , stapedius muscle or tensor tympani ( eardrum ).
HRTF filtering effect. A head-related transfer function (HRTF) is a response that characterizes how an ear receives a sound from a point in space. As sound strikes the listener, the size and shape of the head, ears, ear canal, density of the head, size and shape of nasal and oral cavities, all transform the sound and affect how it is perceived, boosting some frequencies and attenuating others.
Noise-induced hearing loss is a permanent shift in pure-tone thresholds, resulting in sensorineural hearing loss. The severity of a threshold shift is dependent on duration and severity of noise exposure. Noise-induced threshold shifts are seen as a notch on an audiogram from 3000 to 6000 Hz, but most often at 4000 Hz. [16]