Search results
Results from the WOW.Com Content Network
The difference between true stress–strain curve and engineering stress–strain curve. In the above definitions of engineering stress and strain, two behaviors of materials in tensile tests are ignored: the shrinking of section area; compounding development of elongation
Total strain energy theory – This theory assumes that the stored energy associated with elastic deformation at the point of yield is independent of the specific stress tensor. Thus yield occurs when the strain energy per unit volume is greater than the strain energy at the elastic limit in simple tension.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.
The stress and strain can be normal, shear, or a mixture, and can also be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stress–strain curve typically refers to the relationship between axial normal stress and ...
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
Alternative graphical methods for the representation of the stress state at a point include the Lamé's stress ellipsoid and Cauchy's stress quadric. The Mohr circle can be applied to any symmetric 2x2 tensor matrix, including the strain and moment of inertia tensors.
The general equation for power law creep is as follows, [17] where is a dimensionless constant relating shear strain rate and stress, μ is the shear modulus, b is the Burger's vector, k is the Boltzmann constant, T is the temperature, n is the stress exponent, is the applied shear stress, and is the effective diffusion constant.
The (infinitesimal) strain tensor (symbol ) is defined in the International System of Quantities (ISQ), more specifically in ISO 80000-4 (Mechanics), as a "tensor quantity representing the deformation of matter caused by stress. Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components."