Search results
Results from the WOW.Com Content Network
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
With β = 1, the usual exponential function is recovered. With a stretching exponent β between 0 and 1, the graph of log f versus t is characteristically stretched, hence the name of the function. The compressed exponential function (with β > 1) has less practical importance, with the notable exception of β = 2, which gives the normal ...
Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale. It is useful for data with exponential relationships, where one variable covers a large range of values. [1]
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
A double exponential function (red curve) compared to a single exponential function (blue curve). A double exponential function is a constant raised to the power of an exponential function. The general formula is () = = (where a>1 and b>1), which grows much more quickly than an exponential function. For example, if a = b = 10: f(x) = 10 10 x; f ...
The above procedure now is reversed to find the form of the function F(x) using its (assumed) known log–log plot. To find the function F, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.
If f is expanded as = + + + + + + If the origin (0, 0) is on the curve then a 0 = 0. If b 1 ≠ 0 then the implicit function theorem guarantees there is a smooth function h so that the curve has the form y = h(x) near the origin.
A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function , which is defined by the formula: [ 1 ]