Search results
Results from the WOW.Com Content Network
p–n junctions represent the simplest case of a semiconductor electronic device; a p-n junction by itself, when connected on both sides to a circuit, is a diode. More complex circuit components can be created by further combinations of p-type and n-type semiconductors; for example, the bipolar junction transistor (BJT) is a semiconductor in ...
From Top to Bottom; Top: hole and electron concentrations through the junction; Second: charge densities; Third: electric field; Bottom: electric potential Figure 3. A PN junction in forward bias mode, the depletion width decreases. Both p and n junctions are doped at a 1e15/cm3 doping level, leading to built-in potential of ~0.59V.
The intercept to the x axis provides the built-in potential, or the flatband potential (as here the surface barrier has been flattened) and allows establishing the semiconductor conduction band level with respect to the reference of potential. In liquid junction the reference of potential is normally a standard reference electrode. In solid ...
When it is operating in the second or fourth quadrant, current is forced to flow through the device from the negative to the positive voltage terminal, against the opposing force of the electric field, so the electric charges are gaining potential energy. Thus the device is converting some other form of energy into electric energy.
This increases the volume where electron-hole pairs can be generated by an incident photon. Some photodetector devices, such as PIN photodiodes and phototransistors (in which the base-collector junction is a PIN diode), use a PIN junction in their construction. The diode design has some design trade-offs.
The rectifying metal–semiconductor junction forms a Schottky barrier, making a device known as a Schottky diode, while the non-rectifying junction is called an ohmic contact. [1] In contrast, a rectifying semiconductor–semiconductor junction, the most common semiconductor device today, is known as a p–n junction .)
Band diagram of PN junction operation in forward bias mode showing reducing depletion width. Both p and n junctions are doped at a 1×10 15 /cm 3 doping level, leading to built-in potential of ~0.59 V. Reducing depletion width can be inferred from the shrinking charge profile, as fewer dopants are exposed with increasing forward bias.
Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium. In solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. [1]