enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The characteristic function of a real-valued random variable always exists, since it is an integral of a bounded continuous function over a space whose measure is finite. A characteristic function is uniformly continuous on the entire space. It is non-vanishing in a region around zero: φ(0) = 1. It is bounded: | φ(t) | ≤ 1.

  3. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.

  4. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    The concept of probability function is made more rigorous by defining it as the element of a probability space (,,), where is the set of possible outcomes, is the set of all subsets whose probability can be measured, and is the probability function, or probability measure, that assigns a probability to each of these measurable subsets .

  5. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  6. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    In statistics, "random sample" is the typical terminology, but in probability, it is more common to say "IID." Identically distributed means that there are no overall trends — the distribution does not fluctuate and all items in the sample are taken from the same probability distribution.

  7. Probability distribution fitting - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution...

    Probability distribution fitting or simply distribution fitting is the fitting of a probability distribution to a series of data concerning the repeated measurement of a variable phenomenon. The aim of distribution fitting is to predict the probability or to forecast the frequency of occurrence of the magnitude of the phenomenon in a certain ...

  8. Tightness of measures - Wikipedia

    en.wikipedia.org/wiki/Tightness_of_measures

    Very often, the measures in question are probability measures, so the last part can be written as μ ( K ε ) > 1 − ε . {\displaystyle \mu (K_{\varepsilon })>1-\varepsilon .\,} If a tight collection M {\displaystyle M} consists of a single measure μ {\displaystyle \mu } , then (depending upon the author) μ {\displaystyle \mu } may either ...

  9. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    In general statistics and probability, "divergence" generally refers to any kind of function (,), where , are probability distributions or other objects under consideration, such that conditions 1, 2 are satisfied. Condition 3 is required for "divergence" as used in information geometry.