enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix polynomial - Wikipedia

    en.wikipedia.org/wiki/Matrix_polynomial

    A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n (R). Matrix polynomials are often demonstrated in undergraduate linear algebra classes due to their relevance in showcasing properties of linear transformations represented as matrices, most notably the Cayley–Hamilton ...

  3. Polynomial matrix - Wikipedia

    en.wikipedia.org/wiki/Polynomial_matrix

    A polynomial matrix over a field with determinant equal to a non-zero element of that field is called unimodular, and has an inverse that is also a polynomial matrix. Note that the only scalar unimodular polynomials are polynomials of degree 0 – nonzero constants, because an inverse of an arbitrary polynomial of higher degree is a rational function.

  4. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The Leibniz formula for the determinant of a 3 × 3 matrix is the following: | | = + +. ... the eigenvalues and the characteristic polynomial of a matrix.

  5. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. [4]

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    A matrix polynomial equation is an equality between two matrix polynomials, which holds for the specific matrices in question. A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n (R).

  7. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  8. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    In statistics, the equation = means that the Vandermonde matrix is the design matrix of polynomial regression. In numerical analysis , solving the equation V a = y {\displaystyle Va=y} naïvely by Gaussian elimination results in an algorithm with time complexity O( n 3 ).

  9. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    Any circulant is a matrix polynomial (namely, the associated polynomial) in the cyclic permutation matrix: = + + + + = (), where is given by the companion matrix = []. The set of n × n {\displaystyle n\times n} circulant matrices forms an n {\displaystyle n} - dimensional vector space with respect to addition and scalar multiplication.