Search results
Results from the WOW.Com Content Network
Surface modification is the act of modifying the surface of a material by bringing physical, chemical or biological characteristics different from the ones originally found on the surface of a material. [1] This modification is usually made to solid materials, but it is possible to find examples of the modification to the surface of specific ...
Plasma activation (or plasma functionalization) is a method of surface modification employing plasma processing, which improves surface adhesion properties of many materials including metals, glass, ceramics, a broad range of polymers and textiles and even natural materials such as wood and seeds. Plasma functionalization also refers to the ...
A chemically modified electrode is an electrical conductor that has its surface modified for different electrochemical functions. Chemically modified electrodes are made using advanced approaches to electrode systems by adding a thin film or layer of certain chemicals to change properties of the conductor according to its targeted function.
Corona treatment (sometimes referred to as air plasma) is a surface modification technique that uses a low temperature corona discharge plasma to impart changes in the properties of a surface. The corona plasma is generated by the application of high voltage to an electrode that has a sharp tip. The plasma forms at the tip.
Most metal surface reactions occur by chain propagation in which catalytic intermediates are cyclically produced and consumed. [8] Two main mechanisms for surface reactions can be described for A + B → C. [2] Langmuir–Hinshelwood mechanism: The reactant molecules, A and B, both adsorb to the catalytic surface. While adsorbed to the surface ...
The enhancement falls off quickly with distance from the surface and, for noble metal nanoparticles, the resonance occurs at visible wavelengths. [2] Localized surface plasmon resonance creates brilliant colors in metal colloidal solutions. [3] For metals like silver and gold, the oscillation frequency is also affected by the electrons in d ...
An example of a polar surface is the rocksalt (111) surface. [2] In general, a polar surface is less stable than a nonpolar surface because a dipole moment increases the surface Gibbs energy. Also, oxygen polar surfaces are more stable than metal polar surfaces because oxygen ions are more polarizable , which lowers the surface energy.
An application where DBDs can be successfully used is to modify the characteristics of a material surface. The modification can target a change in its hydrophilicity, the surface activation, the introduction of functional groups, and so on. Polymeric surfaces are easy to be processed using DBDs which, in some cases, offer a high processing area.