Search results
Results from the WOW.Com Content Network
The particle size distribution of a soil, its texture, determines many of the properties of that soil, in particular hydraulic conductivity and water potential, [1] but the mineralogy of those particles can strongly modify those properties. The mineralogy of the finest soil particles, clay, is especially important.
Soil texture determines total volume of the smallest pores; [56] clay soils have smaller pores, but more total pore space than sands, [57] despite a much lower permeability. [58] Soil structure has a strong influence on the larger pores that affect soil aeration , water infiltration and drainage . [ 59 ]
Soil moisture measurement—measuring the water content of the soil, as can be expressed in terms of volume or weight—can be based on in situ probes (e.g., capacitance probes, neutron probes), or remote sensing methods. Soil moisture measurement is an important factor in determining changes in soil activity.
Soil texture is a classification instrument used both in the field and laboratory to determine soil classes based on their physical texture. Soil texture can be determined using qualitative methods such as texture by feel, and quantitative methods such as the hydrometer method based on Stokes' law .
Iron can also be oxidized by marine microbes under conditions that are high in iron and low in oxygen. [202] Iron can enter marine systems through adjoining rivers and directly from the atmosphere. Once iron enters the ocean, it can be distributed throughout the water column through ocean mixing and through recycling on the cellular level. [203]
Iron reaches the atmosphere through volcanism, [8] aeolian activity, [9] and some via combustion by humans. In the Anthropocene, iron is removed from mines in the crust and a portion re-deposited in waste repositories. [4] [6] The iron cycle (Fe) is the biogeochemical cycle of iron through the atmosphere, hydrosphere, biosphere and lithosphere.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Controlling the production process in combination with the characterization of texture and the material's microstructure help to determine the materials properties, i.e. the processing-microstructure-texture-property relationship. [2] [3] [4] Also, geologic rocks show texture due to their thermo-mechanic history of formation processes.