enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...

  4. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    Mathematically, =, where F is the restoring elastic force exerted by the spring (in SI units: N), k is the spring constant (N·m −1), and x is the displacement from the equilibrium position (in metres). For any simple mechanical harmonic oscillator:

  5. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1.The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).

  6. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  7. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient:

  8. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    8.2 Spring/mass system. ... where F is the force, k is the spring constant, ... SI units Acceleration of mass m/s 2: Peak amplitude of oscillation ...

  9. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    A spring that obeys Hooke's Law with spring constant k will have a total system energy E of: [14] E = ( 1 2 ) k A 2 {\displaystyle E=\left({\frac {1}{2}}\right)kA^{2}} Here, A is the amplitude of the wave-like motion that is produced by the oscillating behavior of the spring.