Search results
Results from the WOW.Com Content Network
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...
In a dagger category , a morphism is called . unitary if † =,; self-adjoint if † =.; The latter is only possible for an endomorphism:.The terms unitary and self-adjoint in the previous definition are taken from the category of Hilbert spaces, where the morphisms satisfying those properties are then unitary and self-adjoint in the usual sense.
As a further example, negation can be defined in terms of NAND and can also be defined in terms of NOR. Algebraically, classical negation corresponds to complementation in a Boolean algebra, and intuitionistic negation to pseudocomplementation in a Heyting algebra. These algebras provide a semantics for classical and intuitionistic logic.
In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group:
Some of these connectives may be defined in terms of others: for instance, implication, p → q, may be defined in terms of disjunction and negation, as ¬p ∨ q; [74] and disjunction may be defined in terms of negation and conjunction, as ¬(¬p ∧ ¬q). [51]
In mathematics, racks and quandles are sets with binary operations satisfying axioms analogous to the Reidemeister moves used to manipulate knot diagrams.. While mainly used to obtain invariants of knots, they can be viewed as algebraic constructions in their own right.
In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.