Search results
Results from the WOW.Com Content Network
A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy (hydrostatic energy i.e. flow, pressure). Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a load at the pump outlet.
In this article, the following conventions and definitions are to be understood: The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density.
Mays, Larry W. (1999), Hydraulic Design Handbook, McGraw Hill; Watkins, James A. (1987), Turf Irrigation Manual (5th ed.), Telsco; Williams, Gardner Stewart; Hazen, Allen (1905), Hydraulic tables: showing the loss of head due to the friction of water flowing in pipes, aqueducts, sewers, etc. and the discharge over weirs (first ed.), New York ...
Hydraulic Flood Retention Basin (HFRB) View from Church Span Bridge, Bern, Switzerland Riprap lining a lake shore. Hydraulic engineering as a sub-discipline of civil engineering is concerned with the flow and conveyance of fluids, principally water and sewage. One feature of these systems is the extensive use of gravity as the motive force to ...
In this expression for Reynolds number, the characteristic length D is taken to be the hydraulic diameter of the pipe, which, for a cylindrical pipe flowing full, equals the inside diameter. In Figures 1 and 2 of friction factor versus Reynolds number, the regime Re < 2000 demonstrates laminar flow; the friction factor is well represented by ...
Hydraulics and other studies [1] An open channel, with a uniform depth. Open-channel hydraulics deals with uniform and non-uniform streams. Illustration of hydraulic and hydrostatic, from the "Table of Hydraulics and Hydrostatics", from Cyclopædia, or an Universal Dictionary of Arts and Sciences, edited by Ephraim Chambers, 1728, Vol. 1
Hydraulic calculations indicate that the combination of the two primary components of a water based fire protection system will meet the design objectives to control, suppress, or extinguish a fire: The available water supply is sufficient in flowrate and pressure.
The depth changes abruptly over a comparatively short distance. Rapidly varied flow is known as a local phenomenon. Examples are the hydraulic jump and the hydraulic drop. Gradually-varied flow. The depth changes over a long distance. Continuous flow. The discharge is constant throughout the reach of the channel under consideration. This is ...