Search results
Results from the WOW.Com Content Network
The Weinreb–Nahm ketone synthesis. The major advantage of this method over addition of organometallic reagents to more typical acyl compounds is that it avoids the common problem of over-addition. For these latter reactions, two equivalents of the incoming group add to form an alcohol rather than a ketone or aldehyde. This occurs even if the ...
The condensation of aldehydes with hydroxylamine gives aldoximes, and ketoximes are produced from ketones and hydroxylamine. In general, oximes exist as colorless crystals or as thick liquids and are poorly soluble in water. Therefore, oxime formation can be used for the identification of ketone or aldehyde functional groups.
The Corey–Seebach reaction is of interest as an acyl anion equivalent, allowing aldehydes to be converted to ketones. The lithiated 1,3-dithiane can be alkylated with alkyl halides , epoxides , [ 3 ] [ 4 ] ketones , acyl halides , and iminium salts, which after hydrolysis of dithioacetals can yield ketones, β-hydroxyketones, α ...
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [2] and later by Fritz Schlotterbeck in 1907. [3]
The use of aldehyde in the name comes from its history: aldehydes are more reactive than ketones, so that the reaction was discovered first with them. [2] [3] [4] The aldol reaction is paradigmatic in organic chemistry and one of the most common means of forming carbon–carbon bonds in organic chemistry.
An aldehyde differs from a ketone in that it has a hydrogen atom attached to its carbonyl group, making aldehydes easier to oxidize. Ketones do not have a hydrogen atom bonded to the carbonyl group, and are therefore more resistant to oxidation. They are oxidized only by powerful oxidizing agents which have the ability to cleave carbon–carbon ...
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.