enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hair cell - Wikipedia

    en.wikipedia.org/wiki/Hair_cell

    In mammalian outer hair cells, the varying receptor potential is converted to active vibrations of the cell body. This mechanical response to electrical signals is termed somatic electromotility; [13] it drives variations in the cell's length, synchronized to the incoming sound signal, and provides mechanical amplification by feedback to the traveling wave.

  3. Tip link - Wikipedia

    en.wikipedia.org/wiki/Tip_link

    When the hair cells are deflected toward the kinocilium, depolarization occurs; when deflection is away from the kinocilium, hyperpolarization occurs. The tip link is made of two different cadherin molecules, protocadherin 15 and cadherin 23 . [ 4 ]

  4. Organ of Corti - Wikipedia

    en.wikipedia.org/wiki/Organ_of_Corti

    The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2] Strategically positioned on the basilar membrane of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells ...

  5. Basilar membrane - Wikipedia

    en.wikipedia.org/wiki/Basilar_membrane

    The hair cells are attached to the basilar membrane, and with the moving of the basilar membrane, the tectorial membrane and the hair cells are also moving, with the stereocilia bending with the relative motion of the tectorial membrane. This can cause opening and closing of the mechanically gated potassium channels on the cilia of the hair cell.

  6. Cochlear amplifier - Wikipedia

    en.wikipedia.org/wiki/Cochlear_amplifier

    The hair bundle motor operates by deflecting hair bundles in the positive direction and providing positive feedback of the basilar membrane, increasing the movement of the basilar membrane which increases the response to a signal. Two mechanisms have been proposed for this motor: fast adaptation, or channel re-closure, and slow adaptation.

  7. Tympanic duct - Wikipedia

    en.wikipedia.org/wiki/Tympanic_duct

    This movement is conveyed to the organ of Corti inside the cochlear duct, composed of hair cells attached to the basilar membrane and their stereocilia embedded in the tectorial membrane. The movement of the basilar membrane compared to the tectorial membrane causes the stereocilia to bend. They then depolarise and send impulses to the brain ...

  8. Tonotopy - Wikipedia

    en.wikipedia.org/wiki/Tonotopy

    The height of hair bundles increases from base to apex and the number of stereocilia decreases (i.e. hair cells located at the base of the cochlea contain more stereo cilia than those located at the apex). [14] Furthermore, in the tip-link complex of cochlear hair cells, tonotopy is associated with gradients of intrinsic mechanical properties. [15]

  9. Inner ear regeneration - Wikipedia

    en.wikipedia.org/wiki/Inner_Ear_Regeneration

    While inner hair cells are the sensory receptors, outer hair cells are the efferent receptors and are important in fine-tuning sensory input by contracting and relaxing to alter the tectorial membrane on the surface of the hair cells. [3] Uncoiled cochlea with basilar membrane