Search results
Results from the WOW.Com Content Network
exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex) Tetrahedron {3,3} (3.3.3) arccos ( 1 / 3 ) 70.529° Hexahedron or Cube {4,3} (4.4.4) arccos (0) = π / 2 90° Octahedron {3,4} (3.3.3.3) arccos (- 1 / 3 ) 109.471° Dodecahedron {5,3} (5.5.5) arccos ...
In pyritohedral pyrite, the faces have a Miller index of (210), which means that the dihedral angle is 2·arctan(2) ≈ 126.87° and each pentagonal face has one angle of approximately 121.6° in between two angles of approximately 106.6° and opposite two angles of approximately 102.6°. The following formulas show the measurements for the ...
A dihedral angle is the angle between two intersecting planes or half-planes. It is a plane angle formed on a third plane, perpendicular to the line of intersection between the two planes or the common edge between the two half-planes. In higher dimensions, a dihedral angle represents the angle between two hyperplanes.
A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids , described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler .
This fact can be used to calculate the dihedral angles themselves for a regular or edge-symmetric ideal polyhedron (in which all these angles are equal), by counting how many edges meet at each vertex: an ideal regular tetrahedron, cube or dodecahedron, with three edges per vertex, has dihedral angles = / = (), an ideal regular octahedron or ...
The dihedral angle of a regular dodecahedron is ~116.6°, so it is impossible to fit 4 of them on an edge in Euclidean 3-space. However in hyperbolic space a properly-scaled regular dodecahedron can be scaled so that its dihedral angles are reduced to 90 degrees, and then four fit exactly on every edge.
The dihedral angle of a Euclidean regular dodecahedron is ~116.6°, so no more than three of them can fit around an edge in Euclidean 3-space. In hyperbolic space, however, the dihedral angle is smaller than it is in Euclidean space, and depends on the size of the figure; the smallest possible dihedral angle is 60°, for an ideal hyperbolic regular dodecahedron with infinitely long edges.
The solid angle, Ω, at the vertex of a Platonic solid is given in terms of the dihedral angle by Ω = q θ − ( q − 2 ) π . {\displaystyle \Omega =q\theta -(q-2)\pi .\,} This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron { p , q } is a regular q -gon.