enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Straight-line mechanism - Wikipedia

    en.wikipedia.org/wiki/Straight-line_mechanism

    A straight-line mechanism is a mechanism that converts any type of rotary or angular motion to perfect or near-perfect straight-line motion, or vice versa. Straight-line motion is linear motion of definite length or "stroke", every forward stroke being followed by a return stroke, giving reciprocating motion.

  3. Peaucellier–Lipkin linkage - Wikipedia

    en.wikipedia.org/wiki/Peaucellier–Lipkin_linkage

    Animation for Peaucellier–Lipkin linkage: Dimensions: Cyan Links = a Green Links = b Yellow Links = c. The Peaucellier–Lipkin linkage (or Peaucellier–Lipkin cell, or Peaucellier–Lipkin inversor), invented in 1864, was the first true planar straight line mechanism – the first planar linkage capable of transforming rotary motion into perfect straight-line motion, and vice versa.

  4. Chebyshev linkage - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_linkage

    It was invented by the 19th-century mathematician Pafnuty Chebyshev, who studied theoretical problems in kinematic mechanisms. One of the problems was the construction of a linkage that converts a rotary motion into an approximate straight-line motion (a straight line mechanism ).

  5. Linear actuator - Wikipedia

    en.wikipedia.org/wiki/Linear_actuator

    A linear actuator is an actuator that creates linear motion (i.e., in a straight line), in contrast to the circular motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer peripherals such as disk drives and printers, in valves and dampers , and in many other places where linear ...

  6. Cam (mechanism) - Wikipedia

    en.wikipedia.org/wiki/Cam_(mechanism)

    The cam can be seen as a device that converts rotational motion to reciprocating (or sometimes oscillating) motion. [clarification needed] [3] A common example is the camshaft of an automobile, which takes the rotary motion of the engine and converts it into the reciprocating motion necessary to operate the intake and exhaust valves of the cylinders.

  7. Rack and pinion - Wikipedia

    en.wikipedia.org/wiki/Rack_and_pinion

    A rack and pinion has roughly the same purpose as a worm gear with a rack replacing the gear, in that both convert torque to linear force. However the rack and pinion generally provides higher linear speed — since a full turn of the pinion displaces the rack by an amount equal to the pinion's pitch circle whereas a full rotation of the worm screw only displaces the rack by one tooth width.

  8. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).

  9. Four-bar linkage - Wikipedia

    en.wikipedia.org/wiki/Four-bar_linkage

    Some mechanisms that produce reciprocating, or repeating, motion are designed to produce symmetrical motion. That is, the forward stroke of the machine moves at the same pace as the return stroke. These mechanisms, which are often referred to as in-line design, usually do work in both directions, as they exert the same force in both directions.