Ads
related to: semiconductor electron mobility
Search results
Results from the WOW.Com Content Network
Typical electron mobility at room temperature (300 K) in metals like gold, copper and silver is 30–50 cm 2 /(V⋅s). Carrier mobility in semiconductors is doping dependent. In silicon (Si) the electron mobility is of the order of 1,000, in germanium around 4,000, and in gallium arsenide up to 10,000 cm 2 /(V⋅s).
The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.
The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics.
Generally, the carrier mobility μ depends on temperature T, on the applied electric field E, and the concentration of localized states N. Depending on the model, increased temperature may either increase or decrease carrier mobility, applied electric field can increase mobility by contributing to thermal ionization of trapped charges, and ...
Electrical mobility is the ability of charged particles (such as electrons or protons) to move through a medium in response to an electric field that is pulling them. The separation of ions according to their mobility in gas phase is called ion mobility spectrometry, in liquid phase it is called electrophoresis.
The carrier density is important for semiconductors, where it is an important quantity for the process of chemical doping. Using band theory , the electron density, n 0 {\displaystyle n_{0}} is number of electrons per unit volume in the conduction band.
In addition, Wolfspeed offers RF devices comprising GaN-based die, high-electron-mobility transistors, monolithic microwave integrated circuits, and laterally diffused MOSFET power transistors for ...
In a semiconductor with an arbitrary density of states, i.e. a relation of the form = between the density of holes or electrons and the corresponding quasi Fermi level (or electrochemical potential) , the Einstein relation is [11] [12] =, where is the electrical mobility (see § Proof of the general case for a proof of this relation).
Ads
related to: semiconductor electron mobility