Search results
Results from the WOW.Com Content Network
Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal."
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol → {\displaystyle \rightarrow } is interpreted as material implication, a formula P → Q {\displaystyle P\rightarrow Q} is true unless P {\displaystyle P} is true and Q {\displaystyle Q} is false.
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...
Unlike the contrapositive, the inverse's truth value is not at all dependent on whether or not the original proposition was true, as evidenced here. Conversion (the converse), "If I wear my coat, then it is raining." The converse is actually the contrapositive of the inverse, and so always has the same truth value as the inverse (which as ...
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
IMPLY can be denoted in algebraic expressions with the logic symbol right-facing arrow (→). Logically, it is equivalent to material implication, and the logical expression ¬A v B. There are two symbols for IMPLY gates: the traditional symbol and the IEEE symbol. For more information see Logic gate symbols.