enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lighting power density - Wikipedia

    en.wikipedia.org/wiki/Lighting_power_density

    However, in the lighting industry it is often associated with the lighting power allowance (LPA) permitted by the building energy code in question. The Oregon Department of Energy defines lighting power density as "The maximum allowable lighting density permitted by the code. It is expressed in watts per square foot for a given occupancy/space ...

  3. Power density - Wikipedia

    en.wikipedia.org/wiki/Power_density

    Power density, defined as the amount of power (the time rate of energy transfer) per unit volume, is a critical parameter used across a spectrum of scientific and engineering disciplines. This metric, typically denoted in watts per cubic meter (W/m 3 ), serves as a fundamental measure for evaluating the efficacy and capability of various ...

  4. Luminous flux - Wikipedia

    en.wikipedia.org/wiki/Luminous_flux

    In photometry, luminous flux or luminous power [citation needed] is the measure of the perceived power of light. It differs from radiant flux , the measure of the total power of electromagnetic radiation (including infrared , ultraviolet , and visible light), in that luminous flux is adjusted to reflect the varying sensitivity of the human eye ...

  5. Spectral power distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_power_distribution

    Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).

  6. Inverse-square law - Wikipedia

    en.wikipedia.org/wiki/Inverse-square_law

    S represents the light source, while r represents the measured points. The lines represent the flux emanating from the sources and fluxes. The total number of flux lines depends on the strength of the light source and is constant with increasing distance, where a greater density of flux lines (lines per unit area) means a stronger energy field.

  7. Lumen (unit) - Wikipedia

    en.wikipedia.org/wiki/Lumen_(unit)

    In equation form, 1 lx = 1 lm/m 2. A source radiating a power of one watt of light in the color for which the eye is most efficient (a wavelength of 555 nm, in the green region of the optical spectrum) has luminous flux of 683 lumens. So a lumen represents at least 1/683 watts of visible light power, depending on the spectral distribution.

  8. Luminous efficacy - Wikipedia

    en.wikipedia.org/wiki/Luminous_efficacy

    Luminous efficacy of radiation measures the fraction of electromagnetic power which is useful for lighting. It is obtained by dividing the luminous flux by the radiant flux. [4] Light wavelengths outside the visible spectrum reduce luminous efficacy, because they contribute to the radiant flux, while the luminous flux of such light is zero ...

  9. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    But in computing the power transmission (below), these factors must be taken into account. The simplest way to obtain the power transmission coefficient (transmissivity, the ratio of transmitted power to incident power in the direction normal to the interface, i.e. the y direction) is to use R + T = 1 (conservation of energy). In this way we find