Search results
Results from the WOW.Com Content Network
An eight-bit processor like the Intel 8008 addresses eight bits, but as this is the full width of the accumulator and other registers, this could be considered either byte-addressable or word-addressable. 32-bit x86 processors, which address memory in 8-bit units but have 32-bit general-purpose registers and can operate on 32-bit items with a ...
If that memory is arranged in a byte-addressable flat address space using 8-bit bytes, then there are 65,536 (2 16) valid addresses, from 0 to 65,535, each denoting an independent 8 bits of memory. If instead it is arranged in a word-addressable flat address space using 32-bit words, then there are 16,384 (2 14 ) valid addresses, from 0 to ...
34,359,738,368 bits (4 gibibytes) – maximum addressable memory for the Motorola 68020 (1984) and Intel 80386 (1985), also the volume size limit for the FAT16B file system (with 64 KiB clusters) as well as the maximum file size (4 GiB-1) in MS-DOS 7.1-8.0. 3.76 × 10 10 bits (4.7 gigabytes) – capacity of a single-layer, single-sided DVD: 2 36
For instance, a computer said to be "32-bit" also usually allows 32-bit memory addresses; a byte-addressable 32-bit computer can address 2 32 = 4,294,967,296 bytes of memory, or 4 gibibytes (GiB). This allows one memory address to be efficiently stored in one word. However, this does not always hold true.
Content-addressable memory (CAM) is a special type of computer memory used in certain very-high-speed searching applications. It is also known as associative memory or associative storage and compares input search data against a table of stored data, and returns the address of matching data. [1]
Hence, a processor with 64-bit memory addresses can directly access 2 64 bytes (16 exabytes or EB) of byte-addressable memory. With no further qualification, a 64-bit computer architecture generally has integer and addressing registers that are 64 bits wide, allowing direct support for 64-bit data types and addresses.
For the purpose of fetching constant data, program memory is addressed bytewise through the Z pointer register, prepended if necessary by RAMPZ. The EEPROM is memory-mapped in some devices; in others, it is not directly addressable and is instead accessed through address, data and control I/O registers.
A memory address a is said to be n-byte aligned when a is a multiple of n (where n is a power of 2). In this context, a byte is the smallest unit of memory access, i.e. each memory address specifies a different byte. An n-byte aligned address would have a minimum of log 2 (n) least-significant zeros when expressed in binary.