enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    The conventional definition of the spin quantum number is s = ⁠ n / 2 ⁠, where n can be any non-negative integer. Hence the allowed values of s are 0, ⁠ 1 / 2 ⁠, 1, ⁠ 3 / 2 ⁠, 2, etc. The value of s for an elementary particle depends only on the type of particle and cannot be altered in any known way (in contrast to the spin ...

  3. Spinor - Wikipedia

    en.wikipedia.org/wiki/Spinor

    The spin representation Δ is a vector space equipped with a representation of the spin group that does not factor through a representation of the (special) orthogonal group. The vertical arrows depict a short exact sequence.

  4. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...

  5. Spin-1/2 - Wikipedia

    en.wikipedia.org/wiki/Spin-1/2

    Spin-⁠ 1 / 2 ⁠ particles can have a permanent magnetic moment along the direction of their spin, and this magnetic moment gives rise to electromagnetic interactions that depend on the spin. One such effect that was important in the discovery of spin is the Zeeman effect , the splitting of a spectral line into several components in the ...

  6. Spin structure - Wikipedia

    en.wikipedia.org/wiki/Spin_structure

    In particle physics the spin–statistics theorem implies that the wavefunction of an uncharged fermion is a section of the associated vector bundle to the spin lift of an SO(N) bundle E. Therefore, the choice of spin structure is part of the data needed to define the wavefunction, and one often needs to sum over these choices in the partition ...

  7. Chirality (physics) - Wikipedia

    en.wikipedia.org/wiki/Chirality_(physics)

    So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards. Mathematically, helicity is the sign of the projection of the spin vector onto the momentum vector : "left" is negative, "right" is positive.

  8. Pauli–Lubanski pseudovector - Wikipedia

    en.wikipedia.org/wiki/Pauli–Lubanski_pseudovector

    In physics, the Pauli–Lubanski pseudovector is an operator defined from the momentum and angular momentum, used in the quantum-relativistic description of angular momentum. It is named after Wolfgang Pauli and Józef Lubański. [1] It describes the spin states of moving particles. [2]

  9. Spin–statistics theorem - Wikipedia

    en.wikipedia.org/wiki/Spin–statistics_theorem

    The spin–statistics theorem proves that the observed relationship between the intrinsic spin of a particle (angular momentum not due to the orbital motion) and the quantum particle statistics of collections of such particles is a consequence of the mathematics of quantum mechanics.