enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, [1] [2] is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe.

  3. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...

  4. Here’s why the universe has more matter than antimatter - AOL

    www.aol.com/why-universe-more-matter-antimatter...

    All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.

  5. Vacuum energy - Wikipedia

    en.wikipedia.org/wiki/Vacuum_energy

    The book Star Trek: Deep Space Nine Technical Manual describes the operating principle of the so-called quantum torpedo. In this fictional weapon, an antimatter reaction is used to create a multi-dimensional membrane in a vacuum that releases at its decomposition more energy than was needed to produce it. The missing energy is removed from the ...

  6. 10 things in the universe so huge they'll blow your mind - AOL

    www.aol.com/news/2015-10-08-10-biggest-things-in...

    4. IC1101 super galaxy -- As you might guess by the name, this galaxy is the largest discovered by man. More than 6 million light-years across, experts believe it was formed by the collision of ...

  7. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    This imbalance has to be exceptionally small, on the order of 1 in every 1 630 000 000 (≈ 2 × 10 9) particles a small fraction of a second after the Big Bang. [6] After most of the matter and antimatter was annihilated, what remained was all the baryonic matter in the current universe, along with a much greater number of bosons.

  8. Zero-energy universe - Wikipedia

    en.wikipedia.org/wiki/Zero-energy_universe

    But of course he's not just making a hill—he's also making a hole, in effect a negative version of the hill. The stuff that was in the hole has now become the hill, so it all perfectly balances out. This is the principle behind what happened at the beginning of the universe.

  9. Flatness (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Flatness_(cosmology)

    Whether the universe is “flat″ could determine its ultimate fate; whether it will expand forever, or ultimately collapse back into itself. The geometry of spacetime has been measured by the Wilkinson Microwave Anisotropy Probe (WMAP) to be nearly flat.