enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    This imbalance has to be exceptionally small, on the order of 1 in every 1 630 000 000 (≈ 2 × 10 9) particles a small fraction of a second after the Big Bang. [4] After most of the matter and antimatter was annihilated, what remained was all the baryonic matter in the current universe, along with a much greater number of bosons.

  3. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, [1] [2] is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe.

  4. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...

  5. A Day in the Life of… BoyWithUke - AOL

    www.aol.com/entertainment/day-life-boywithuke...

    But in October 2023, BoyWithUke made the decision to share an image of his face on social media, alongside the release of his fourth album, Lucid Dreams, where he experimented with a more personal ...

  6. Here’s why the universe has more matter than antimatter - AOL

    www.aol.com/why-universe-more-matter-antimatter...

    All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.

  7. Right again, Einstein! Study shows how antimatter ... - AOL

    www.aol.com/news/again-einstein-study-shows...

    Under current theory, the Big Bang explosion that initiated the universe should have produced equal amounts of matter and antimatter. This, however, does not seem to be the case.

  8. Proton decay - Wikipedia

    en.wikipedia.org/wiki/Proton_decay

    The universe, as a whole, seems to have a nonzero positive baryon number density – that is, there is more matter than antimatter. Since it is assumed in cosmology that the particles we see were created using the same physics we measure today, it would normally be expected that the overall baryon number should be zero, as matter and antimatter ...

  9. Dark matter - Wikipedia

    en.wikipedia.org/wiki/Dark_matter

    Since observations indicate the universe is almost flat, [74] [75] [76] it is expected the total energy density of everything in the universe should sum to 1 (Ω tot ≈ 1). The measured dark energy density is Ω Λ ≈ 0.690 ; the observed ordinary (baryonic) matter energy density is Ω b ≈ 0.0482 and the energy density of radiation is ...