enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison of data-serialization formats - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_data...

    binary real values are represented in a binary format that includes the mantissa, the base (2, 8, or 16), and the exponent; the special values NaN, -INF, +INF , and negative zero are also supported Multiple valid types ( VisibleString, PrintableString, GeneralString, UniversalString, UTF8String )

  3. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The arithmetical difference between two consecutive representable floating-point numbers which have the same exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the representable numbers 1.45a70c22 hex and 1.45a70c24 hex , the ULP is 2×16 −8 , or 2 −31 .

  5. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.

  6. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa. The digits in the base and exponent ( 10 3 or 10 −2 ) are considered exact numbers so for these digits, significant figures are irrelevant.

  7. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating point value has a significand with a leading digit of zero.

  8. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).

  9. Microsoft Binary Format - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Binary_Format

    MBF numbers consist of an 8-bit base-2 exponent, a sign bit (positive mantissa: s = 0; negative mantissa: s = 1) and a 23-, [43] [8] 31-[8] or 55-bit [43] mantissa of the significand. There is always a 1-bit implied to the left of the explicit mantissa, and the radix point is located before this assumed bit.