Search results
Results from the WOW.Com Content Network
^ The primary format is binary, but text and JSON formats are available. [8] [9] ^ Means that generic tools/libraries know how to encode, decode, and dereference a reference to another piece of data in the same document. A tool may require the IDL file, but no more. Excludes custom, non-standardized referencing techniques.
In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.
The arithmetical difference between two consecutive representable floating-point numbers which have the same exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the representable numbers 1.45a70c22 hex and 1.45a70c24 hex , the ULP is 2×16 −8 , or 2 −31 .
The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.
Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), [2] Thomas J. Scott's WIF of 1991 (5 exponent bits, 10 mantissa bits) [3] and the 3dfx Voodoo Graphics processor of 1995 (same as Hitachi). [4]
Pertaining file extensions include:.docx – Word document.docm – Word macro-enabled document; same as docx, but may contain macros and scripts.dotx – Word template.dotm – Word macro-enabled template; same as dotx, but may contain macros and scripts; Other formats.pdf – PDF documents.wll – Word add-in.wwl – Word add-in
MBF numbers consist of an 8-bit base-2 exponent, a sign bit (positive mantissa: s = 0; negative mantissa: s = 1) and a 23-, [43] [8] 31-[8] or 55-bit [43] mantissa of the significand. There is always a 1-bit implied to the left of the explicit mantissa, and the radix point is located before this assumed bit.
In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating point value has a significand with a leading digit of zero.