enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fluid balance - Wikipedia

    en.wikipedia.org/wiki/Fluid_balance

    In an acute hospital setting, fluid balance is monitored carefully. This provides information on the patient's state of hydration, kidney function and cardiovascular function. [citation needed] If fluid loss is greater than fluid gain (for example if the patient vomits and has diarrhea), the patient is said to be in negative fluid balance.

  3. Borda–Carnot equation - Wikipedia

    en.wikipedia.org/wiki/Borda–Carnot_equation

    ΔE is the fluid's mechanical energy loss, ξ is an empirical loss coefficient, which is dimensionless and has a value between zero and one, 0 ≤ ξ ≤ 1, ρ is the fluid density, v 1 and v 2 are the mean flow velocities before and after the expansion. In case of an abrupt and wide expansion, the loss coefficient is equal to one. [1]

  4. Minor losses in pipe flow - Wikipedia

    en.wikipedia.org/wiki/Minor_Losses_in_pipe_flow

    Minor losses in pipe flow are a major part in calculating the flow, pressure, or energy reduction in piping systems. Liquid moving through pipes carries momentum and energy due to the forces acting upon it such as pressure and gravity.

  5. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.

  7. Venturi effect - Wikipedia

    en.wikipedia.org/wiki/Venturi_effect

    Thus, any gain in kinetic energy a fluid may attain by its increased velocity through a constriction is balanced by a drop in pressure because of its loss in potential energy. By measuring pressure, the flow rate can be determined, as in various flow measurement devices such as Venturi meters, Venturi nozzles and orifice plates.

  8. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  9. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The equation for head loss in pipes, also referred to as slope, S, expressed in "feet per foot of length" vs. in 'psi per foot of length' as described above, with the inside pipe diameter, d, being entered in feet vs. inches, and the flow rate, Q, being entered in cubic feet per second, cfs, vs. gallons per minute, gpm, appears very similar.