enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Once the eigenvalues are computed, the eigenvectors could be calculated by solving the equation (), = using Gaussian elimination or any other method for solving matrix equations. However, in practical large-scale eigenvalue methods, the eigenvectors are usually computed in other ways, as a byproduct of the eigenvalue computation.

  4. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer...

    The eigenvalues and eigenvectors of are simply those of and , and it will almost always be faster to solve these two smaller problems than to solve the original problem all at once. This technique can be used to improve the efficiency of many eigenvalue algorithms, but it has special significance to divide-and-conquer.

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Setting the characteristic polynomial equal to zero, it has roots at λ=1 and λ=3, which are the two eigenvalues of A. The eigenvectors corresponding to each eigenvalue can be found by solving for the components of v in the equation () =.

  6. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    If we assume has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue, then a subsequence () converges to an eigenvector associated with the dominant eigenvalue. Without the two assumptions above ...

  7. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    This solution of the vibrating drum problem is, at any point in time, an eigenfunction of the Laplace operator on a disk.. In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue.

  8. Rayleigh quotient iteration - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient_iteration

    Rayleigh quotient iteration is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates. Rayleigh quotient iteration is an iterative method, that is, it delivers a sequence of approximate solutions that converges to a true solution in the limit ...

  9. Quadratic eigenvalue problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_eigenvalue_problem

    Quadratic eigenvalue problems arise naturally in the solution of systems of second order linear differential equations without forcing: ″ + ′ + = Where (), and ,,.If all quadratic eigenvalues of () = + + are distinct, then the solution can be written in terms of the quadratic eigenvalues and right quadratic eigenvectors as