Search results
Results from the WOW.Com Content Network
According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than ...
Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest. The study of gravity changes belongs to geodynamics.
In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation. Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The ...
The table below shows comparative gravitational accelerations at the surface of the Sun, the Earth's moon, each of the planets in the Solar System and their major moons, Ceres, Pluto, and Eris. For gaseous bodies, the "surface" is taken to mean visible surface: the cloud tops of the giant planets (Jupiter, Saturn, Uranus, and Neptune), and the ...
The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}
This quantity is sometimes referred to informally as little g (in contrast, the gravitational constant G is referred to as big G). The precise strength of Earth's gravity varies with location. The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2) by definition. [4]
Jupiter's magnetic field is the strongest of any planet in the Solar System, [102] with a dipole moment of 4.170 gauss (0.4170 mT) that is tilted at an angle of 10.31° to the pole of rotation. The surface magnetic field strength varies from 2 gauss (0.20 mT) up to 20 gauss (2.0 mT). [122]
This formulation is dependent on the objects causing the field. The field has units of acceleration; in SI, this is m/s 2. Gravitational fields are also conservative; that is, the work done by gravity from one position to another is path-independent. This has the consequence that there exists a gravitational potential field V(r) such that