enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    A precisely specified floating-point representation at the bit-string level, so that all compliant computers interpret bit patterns the same way. This makes it possible to accurately and efficiently transfer floating-point numbers from one computer to another (after accounting for endianness).

  3. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language designers. E.g., GW-BASIC's single-precision data type was the 32-bit MBF floating-point format.

  4. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    A property of the single- and double-precision formats is that their encoding allows one to easily sort them without using floating-point hardware, as if the bits represented sign-magnitude integers, although it is unclear whether this was a design consideration (it seems noteworthy that the earlier IBM hexadecimal floating-point representation ...

  5. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    [citation needed] Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language implementers. E.g., GW-BASIC's double-precision data type was the 64-bit MBF floating-point format.

  6. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.

  7. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    Similar binary floating-point formats can be defined for computers. There is a number of such schemes, the most popular has been defined by Institute of Electrical and Electronics Engineers (IEEE). The IEEE 754-2008 standard specification defines a 64 bit floating-point format with: an 11-bit binary exponent, using "excess-1023" format.

  8. Octuple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Octuple-precision_floating...

    In computing, octuple precision is a binary floating-point-based computer number format that occupies 32 bytes (256 bits) in computer memory.This 256-bit octuple precision is for applications requiring results in higher than quadruple precision.

  9. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    The advantage of decimal floating-point representation over decimal fixed-point and integer representation is that it supports a much wider range of values. For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point ...