enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Splay tree - Wikipedia

    en.wikipedia.org/wiki/Splay_tree

    Below there is an implementation of splay trees in C++, which uses pointers to represent each node on the tree. This implementation is based on bottom-up splaying version and uses the second method of deletion on a splay tree. Also, unlike the above definition, this C++ version does not splay the tree on finds – it only splays on insertions ...

  3. B+ tree - Wikipedia

    en.wikipedia.org/wiki/B+_tree

    A B+ tree is an m-ary tree with a variable but often large number of children per node. A B+ tree consists of a root, internal nodes and leaves. [ 1 ] The root may be either a leaf or a node with two or more children.

  4. Heap (data structure) - Wikipedia

    en.wikipedia.org/wiki/Heap_(data_structure)

    A common implementation of a heap is the binary heap, in which the tree is a complete [2] binary tree (see figure). The heap data structure, specifically the binary heap, was introduced by J. W. J. Williams in 1964, as a data structure for the heapsort sorting algorithm. [3]

  5. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    Trees can be used to represent and manipulate various mathematical structures, such as: Paths through an arbitrary node-and-edge graph (including multigraphs), by making multiple nodes in the tree for each graph node used in multiple paths; Any mathematical hierarchy; Tree structures are often used for mapping the relationships between things ...

  6. 2–3–4 tree - Wikipedia

    en.wikipedia.org/wiki/2–3–4_tree

    In computer science, a 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that can be used to implement dictionaries. The numbers mean a tree where every node with children (internal node) has either two, three, or four child nodes: a 2-node has one data element, and if internal has two child nodes;

  7. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    For comparison, an AVL tree is guaranteed to be within a factor of 1.44 of the optimal height while requiring only two additional bits of storage in a naive implementation. [1] Therefore, most self-balancing BST algorithms keep the height within a constant factor of this lower bound.

  8. Octree - Wikipedia

    en.wikipedia.org/wiki/Octree

    An octree is a tree data structure in which each internal node has exactly eight children. Octrees are most often used to partition a three-dimensional space by recursively subdividing it into eight octants. Octrees are the three-dimensional analog of quadtrees. The word is derived from oct (Greek root meaning "eight") + tree.

  9. Quadtree - Wikipedia

    en.wikipedia.org/wiki/Quadtree

    A tree-pyramid (T-pyramid) is a "complete" tree; every node of the T-pyramid has four child nodes except leaf nodes; all leaves are on the same level, the level that corresponds to individual pixels in the image.