enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron. Any convex polyhedron's surface has Euler characteristic = + = . This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3]

  3. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula can also be proved as follows: if the graph isn't a tree, then remove an edge which completes a cycle. This lowers both e and f by one, leaving ve + f constant. Repeat until the remaining graph is a tree; trees have v = e + 1 and f = 1, yielding ve + f = 2, i. e., the Euler characteristic is 2.

  4. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron {p,q} is a regular q-gon. The solid angle of a face subtended from the center of a platonic solid is equal to the solid angle of a full sphere (4 π steradians) divided by the number of faces.

  5. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    He introduced a formula governing the relationship between the number of edges, vertices, and faces of a convex polyhedron. Given such a polyhedron, the alternating sum of vertices, edges and faces equals a constant: VE + F = 2. This constant, χ, is the Euler characteristic of the plane.

  6. Four color theorem - Wikipedia

    en.wikipedia.org/wiki/Four_color_theorem

    Suppose v, e, and f are the number of vertices, edges, and regions (faces). Since each region is triangular and each edge is shared by two regions, we have that 2e = 3f. This together with Euler's formula, ve + f = 2, can be used to show that 6v − 2e = 12. Now, the degree of a vertex is the number of edges abutting it.

  7. Euler operator (digital geometry) - Wikipedia

    en.wikipedia.org/wiki/Euler_operator_(digital...

    Let the number of vertices be V, edges be E, faces be F, components H, shells S, and let the genus be G (S and G correspond to the b 0 and b 2 Betti numbers respectively). Then, to denote a meaningful geometric object, the mesh must satisfy the generalized Euler–Poincaré formula. VE + F = H + 2 * (S – G) The Euler operators preserve ...

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  9. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity therefore states that the limit, as n approaches infinity, of (+ /) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,