enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  3. Random projection - Wikipedia

    en.wikipedia.org/wiki/Random_projection

    The random matrix R can be generated using a Gaussian distribution. The first row is a random unit vector uniformly chosen from S d − 1 {\displaystyle S^{d-1}} . The second row is a random unit vector from the space orthogonal to the first row, the third row is a random unit vector from the space orthogonal to the first two rows, and so on.

  4. Random matrix - Wikipedia

    en.wikipedia.org/wiki/Random_matrix

    Wishart matrices are n × n random matrices of the form H = X X *, where X is an n × m random matrix (m ≥ n) with independent entries, and X * is its conjugate transpose. In the important special case considered by Wishart, the entries of X are identically distributed Gaussian random variables (either real or complex).

  5. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    A real random vector = (, …,) is called a centered normal random vector if there exists a matrix such that has the same distribution as where is a standard normal random vector with components. [ 1 ] : p. 454

  6. Complex normal distribution - Wikipedia

    en.wikipedia.org/wiki/Complex_normal_distribution

    The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable whose real and imaginary parts are independent normally distributed random variables with mean zero and variance /. [3]: p. 494 [4]: pp. 501 Formally,

  7. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  8. Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Wishart_distribution

    Suppose G is a p × n matrix, each column of which is independently drawn from a p-variate normal distribution with zero mean: = (, …,) (,). Then the Wishart distribution is the probability distribution of the p × p random matrix [4]

  9. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.