Search results
Results from the WOW.Com Content Network
A fast Fourier transform (FFT) is an algorithm that computes the Discrete Fourier Transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa.
Smaart is a real-time single and dual-channel fast Fourier transform (FFT) analyzer. Smaart has two modes: Real-Time Mode and impulse response mode. Real-Time mode views include single channel Spectrum and dual channel Transfer Function measurements to display RTA, Spectrograph, and Transfer Function (Live IR, Phase, Coherence, Magnitude ...
An FFT analyzer computes a time-sequence of periodograms. FFT refers to a particular mathematical algorithm used in the process. This is commonly used in conjunction with a receiver and analog-to-digital converter. As above, the receiver reduces the center-frequency of a portion of the input signal spectrum, but the portion is not swept.
For example, a Fast Fourier Transform algorithm could stop the recursion when the input is a single sample, and the quicksort list-sorting algorithm could stop when the input is the empty list; in both examples, there is only one base case to consider, and it requires no processing.
This category is for fast Fourier transform (FFT) algorithms, i.e. algorithms to compute the discrete Fourier transform (DFT) in O(N log N) time (or better, for approximate algorithms), where is the number of discrete points.
List of cycles; list of Fourier-related transforms; list of harmonic analysis topics; LTI system theory; Autocorrelation; Autocovariance; Whittaker–Shannon interpolation formula; Gabor atom; Marcinkiewicz theorem; Nyquist–Shannon sampling theorem; Riesz–Thorin theorem
The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).
FFTPACK is a package of Fortran subroutines for the fast Fourier transform.It includes complex, real, sine, cosine, and quarter-wave transforms.It was developed by Paul Swarztrauber of the National Center for Atmospheric Research, and is included in the general-purpose mathematical library SLATEC.