enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. FFTPACK - Wikipedia

    en.wikipedia.org/wiki/FFTPACK

    FFTPACK is a package of Fortran subroutines for the fast Fourier transform.It includes complex, real, sine, cosine, and quarter-wave transforms.It was developed by Paul Swarztrauber of the National Center for Atmospheric Research, and is included in the general-purpose mathematical library SLATEC.

  3. Cooley–Tukey FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm

    The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).

  4. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    The development of fast algorithms for DFT can be traced to Carl Friedrich Gauss's unpublished 1805 work on the orbits of asteroids Pallas and Juno.Gauss wanted to interpolate the orbits from sample observations; [6] [7] his method was very similar to the one that would be published in 1965 by James Cooley and John Tukey, who are generally credited for the invention of the modern generic FFT ...

  5. List of Fourier-related transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Fourier-related...

    The use of all of these transforms is greatly facilitated by the existence of efficient algorithms based on a fast Fourier transform (FFT). The Nyquist–Shannon sampling theorem is critical for understanding the output of such discrete transforms.

  6. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    Both transforms are invertible. The inverse DTFT reconstructs the original sampled data sequence, while the inverse DFT produces a periodic summation of the original sequence. The Fast Fourier Transform (FFT) is an algorithm for computing one cycle of the DFT, and its inverse produces one cycle of the inverse DFT.

  7. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    where "FFT" denotes the fast Fourier transform, and f is the spatial frequency spans from 0 to N/2 – 1. The proposed FFT-based imaging approach is diagnostic technology to ensure a long life and stable to culture arts. This is a simple, cheap which can be used in museums without affecting their daily use.

  8. Discrete Fourier transform over a ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform...

    Most of the important attributes of the complex DFT, including the inverse transform, the convolution theorem, and most fast Fourier transform (FFT) algorithms, depend only on the property that the kernel of the transform is a principal root of unity. These properties also hold, with identical proofs, over arbitrary rings.

  9. Hexagonal fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_Fast_Fourier...

    The hexagonal fast Fourier transform (HFFT) uses existing FFT routines to compute the discrete Fourier transform (DFT) of images that have been captured with hexagonal sampling. [1] The hexagonal grid serves as the optimal sampling lattice for isotropically band-limited two-dimensional signals and has a sampling efficiency which is 13.4% ...