Search results
Results from the WOW.Com Content Network
The polynomial 3x 2 − 5x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11]
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
The idea becomes clearer by considering the general series 1 − 2x + 3x 2 − 4x 3 + 5x 4 − 6x 5 + &c. that arises while expanding the expression 1 ⁄ (1+x) 2, which this series is indeed equal to after we set x = 1.
For comparison, the same number in decimal representation: 1.125 × 2 3 (using decimal representation), or 1.125B3 (still using decimal representation). Some calculators use a mixed representation for binary floating point numbers, where the exponent is displayed as decimal number even in binary mode, so the above becomes 1.001 b × 10 b 3 d or ...
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:
A closed interval is an interval that includes all its endpoints and is denoted with square brackets. [2] For example, [0, 1] means greater than or equal to 0 and less than or equal to 1. Closed intervals have one of the the following forms in which a and b are real numbers such that <:
Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).
ICAFs can be constructed to describe continuous motion of a point, z, over the interval, but in such a way that at each "instant" the motion is virtually zero (see Zeno's Arrow): For the interval divided into n equal subintervals, 1 ≤ k ≤ n set , = +, analytic or simply continuous – in a domain S, such that