Search results
Results from the WOW.Com Content Network
The normal stall speed, specified by the V S values above, always refers to straight and level flight, where the load factor is equal to 1g. However, if the aircraft is turning or pulling up from a dive, additional lift is required to provide the vertical or lateral acceleration, and so the stall speed is higher.
Stall speed or minimum steady flight speed for which the aircraft is still controllable. [7] [8] [9] V S 0: Stall speed or minimum flight speed in landing configuration. [7] [8] [9] V S 1: Stall speed or minimum steady flight speed for which the aircraft is still controllable in a specific configuration. [7] [8] V S R: Reference stall speed. [7 ...
It has a maximum speed of 18 miles per hour (29 km/h). [2] The Ruppert Archaeopteryx has a certified stall speed of 30–39 kilometres per hour (19–24 mph). [3] The Vought XF5U can fly as slow as 32 kilometres per hour (20 mph). [4] The Tapanee Pegazair-100 stall speed is 45 kilometres per hour (28 mph).
A flight envelope diagram showing V S (Stall speed at 1G), V C (Corner/Maneuvering speed) and V D (Dive speed) Vg diagram. Note the 1g stall speed, and the Maneuvering Speed (Corner Speed) for both positive and negative g. The maximum “never-exceed” placard dive speeds are determined for smooth air only. In aviation, the maneuvering speed ...
A load factor greater than 1 will cause the stall speed to increase by a factor equal to the square root of the load factor. For example, if the load factor is 2, the stall speed will increase by a ratio of 2 {\displaystyle {\sqrt {2}}} , or about 140%.
Wing loading is a useful measure of the stalling speed of an aircraft. Wings generate lift owing to the motion of air around the wing. Larger wings move more air, so an aircraft with a large wing area relative to its mass (i.e., low wing loading) will have a lower stalling speed.
A diverted American Airlines flight from Chicago experiencing right engine stall made emergency landing Wednesday night in Columbus without incident.
All fixed-wing aircraft have a minimum speed at which they can maintain level flight, the stall speed (left limit line in the diagram). As the aircraft gains altitude the stall speed increases; since the wing is not growing any larger the only way to support the aircraft's weight with less air is to increase speed.