Search results
Results from the WOW.Com Content Network
A diagram with multiple synchronous machine curves; open-circuit saturation curve is the leftmost one. The open-circuit saturation curve (also open-circuit characteristic, OCC) of a synchronous generator is a plot of the output open circuit voltage as a function of the excitation current or field.
The open-circuit test, or no-load test, is one of the methods used in electrical engineering to determine the no-load impedance in the excitation branch of a transformer. The no load is represented by the open circuit, which is represented on the right side of the figure as the "hole" or incomplete part of the circuit.
The voltage v oc between the terminals is the open-circuit voltage of the device. Black curve: The highest possible open-circuit voltage of a solar cell in the Shockley-Queisser model under unconcentrated sunlight, as a function of the semiconductor bandgap. The red dotted line shows that this voltage is always smaller than the bandgap voltage.
The points where the characteristic curve and the load line intersect are the possible operating point(s) of the circuit; at these points the current and voltage parameters of both parts of the circuit match. [1] The example at right shows how a load line is used to determine the current and voltage in a simple diode circuit.
The source end of the line is approximately an open circuit due to the high R S, [1] so the step is reflected uninverted and travels back down the line toward the load. The result is that a pulse of voltage is applied to the load with a duration equal to 2 D / c , where D is the length of the line, and c is the propagation velocity of the pulse ...
The equivalent-circuit model is used to simulate the voltage at the cell terminals when an electric current is applied to discharge or recharge it. The most common circuital representation consists of three elements in series: a variable voltage source, representing the open-circuit voltage (OCV) of the cell, a resistor representing ohmic internal resistance of the cell and a set of resistor ...
An early D'Arsonval galvanometer showing magnet and rotating coil. A galvanometer is an electromechanical measuring instrument for electric current.Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely.
Select capacitor C 2, replace it by a test voltage V X, and replace C 1 by an open circuit. Then the resistance seen by the test voltage is found using the circuit in the middle panel of Figure 1 and is simply V X / I X = R 1 + R 2. Form the product C 2 ( R 1 + R 2). Select capacitor C 1, replace it by a test voltage V X, and replace C 2 by an open