Search results
Results from the WOW.Com Content Network
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
For example, the term "map" is often reserved for a "function" with some sort of special structure (e.g. maps of manifolds). In particular map may be used in place of homomorphism for the sake of succinctness (e.g., linear map or map from G to H instead of group homomorphism from G to H).
A mapping : from a metric space to the family of nonempty subsets of is said to be Lipschitz if there exists such that (,) (,), for all ,, where is the Hausdorff distance. When L = 1 {\displaystyle L=1} , T {\displaystyle T} is called nonexpansive , and when L < 1 {\displaystyle L<1} , T {\displaystyle T} is called a contraction .
For example, [0, 1] is the completion of (0, 1), and the real numbers are the completion of the rationals. Since complete spaces are generally easier to work with, completions are important throughout mathematics.
A graphical or bar scale. A map would also usually give its scale numerically ("1:50,000", for instance, means that one cm on the map represents 50,000cm of real space, which is 500 meters) A bar scale with the nominal scale expressed as "1:600 000", meaning 1 cm on the map corresponds to 600,000 cm=6 km on the ground.
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.
Another example is the application of conformal mapping technique for solving the boundary value problem of liquid sloshing in tanks. [ 19 ] If a function is harmonic (that is, it satisfies Laplace's equation ∇ 2 f = 0 {\displaystyle \nabla ^{2}f=0} ) over a plane domain (which is two-dimensional), and is transformed via a conformal map to ...