Search results
Results from the WOW.Com Content Network
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set.
A discrete subgroup H of G is cocompact if there is a compact subset K of G such that HK = G. Discrete normal subgroups play an important role in the theory of covering groups and locally isomorphic groups. A discrete normal subgroup of a connected group G necessarily lies in the center of G and is therefore abelian. Other properties:
Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In arithmetic modulo an integer m , the more commonly used term is index : One can write k = ind b a (mod m ) (read "the index of a to the base b modulo m ") for b k ≡ a (mod m ) if k is a primitive ...
In signal processing and machine learning, discrete calculus allows for appropriate definitions of operators (e.g., convolution), level set optimization and other key functions for neural network analysis on graph structures. [3] Discrete calculus can be used in conjunction with other mathematical disciplines.
The various branches of the DEM family are the distinct element method proposed by Peter A. Cundall and Otto D. L. Strack in 1979, [5] the generalized discrete element method, [6] the discontinuous deformation analysis (DDA) and the finite-discrete element method concurrently developed by several groups (e.g., Munjiza and Owen).