Search results
Results from the WOW.Com Content Network
Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, [3] a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for ...
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
To use only O(M+N) or even O(log MN) auxiliary storage, more-complex algorithms are required, and the known algorithms have a worst-case linearithmic computational cost of O(MN log MN) at best, as first proved by Knuth (Fich et al., 1995; Gustavson & Swirszcz, 2007). Such algorithms are designed to move each data element exactly once.
Flashsort is an efficient in-place implementation of histogram sort, itself a type of bucket sort. It assigns each of the n input elements to one of m buckets, efficiently rearranges the input to place the buckets in the correct order, then sorts each bucket. The original algorithm sorts an input array A as follows:
Swapping pairs of items in successive steps of Shellsort with gaps 5, 3, 1. Shellsort, also known as Shell sort or Shell's method, is an in-place comparison sort.It can be understood as either a generalization of sorting by exchange (bubble sort) or sorting by insertion (insertion sort). [3]
In this mode, the algorithm performs a two-stage search for the place in the run R1 where the next element x of the run R2 would be inserted. In the first stage it performs an exponential search , also known as a galloping search, until finding a k such that R1[2 k−1 − 1] < x <= R1[2 k − 1], i.e. a region of uncertainty comprising 2 k−1 ...
The reversal algorithm is the simplest to explain, using rotations. A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block ...
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]