Search results
Results from the WOW.Com Content Network
In decimal numbers greater than 1 (such as 3.75), the fractional part of the number is expressed by the digits to the right of the decimal (with a value of 0.75 in this case). 3.75 can be written either as an improper fraction, 375/100, or as a mixed number, 3 + 75 / 100 .
Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = 1585 / 1000 ); it may also be written as a ratio of the form k / 2 n ·5 m (e.g. 1.585 = 317 / 2 3 ·5 2 ).
To put in perspective the size of a googol, the mass of an electron, just under 10 −30 kg, can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg. [5] It is a ratio in the order of about 10 80 to 10 90 , or at most one ten-billionth of a googol (0.00000001% of a googol).
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Meanwhile, every number larger than 1 will be larger than any decimal of the form 0.999...9 for any finite number of nines. Therefore, 0.999... cannot be identified with any number larger than 1, either. Because 0.999... cannot be bigger than 1 or smaller than 1, it must equal 1 if it is to be any real number at all. [1] [2]
The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base.In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten.
In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion. Each decimal fraction has exactly two infinite decimal expansions, one containing only 0s after some place, which is obtained by the above definition of [x] n, and the other containing only 9s after some place, which is obtained by defining [x ...
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".