enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.

  3. Midpoint method - Wikipedia

    en.wikipedia.org/wiki/Midpoint_method

    The name of the method comes from the fact that in the formula above, the function giving the slope of the solution is evaluated at = + / = + +, the midpoint between at which the value of () is known and + at which the value of () needs to be found.

  4. Mean curvature - Wikipedia

    en.wikipedia.org/wiki/Mean_curvature

    Furthermore, a surface which evolves under the mean curvature of the surface , is said to obey a heat-type equation called the mean curvature flow equation. The sphere is the only embedded surface of constant positive mean curvature without boundary or singularities. However, the result is not true when the condition "embedded surface" is ...

  5. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .

  6. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  7. Mean curvature flow - Wikipedia

    en.wikipedia.org/wiki/Mean_curvature_flow

    For example, a round sphere evolves under mean curvature flow by shrinking inward uniformly (since the mean curvature vector of a sphere points inward). Except in special cases, the mean curvature flow develops singularities. Under the constraint that volume enclosed is constant, this is called surface tension flow.

  8. Evolute - Wikipedia

    en.wikipedia.org/wiki/Evolute

    From this equation one gets the following properties of the evolute: At points with ′ = the evolute is not regular. That means: at points with maximal or minimal curvature (vertices of the given curve) the evolute has cusps. (See the diagrams of the evolutes of the parabola, the ellipse, the cycloid and the nephroid.)

  9. Killing vector field - Wikipedia

    en.wikipedia.org/wiki/Killing_vector_field

    In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a pseudo-Riemannian manifold that preserves the metric tensor. Killing vector fields are the infinitesimal generators of isometries ; that is, flows generated by Killing vector fields are continuous isometries of the manifold .

  1. Related searches how to calculate curvature matlab program for math equations solution book

    how to find maximum curvaturemean curvature formula
    curvature radiuswhat is mean curvature