Search results
Results from the WOW.Com Content Network
This genetic disorder article is a stub. You can help Wikipedia by expanding it.
Adrenoleukodystrophy (ALD) is a disease linked to the X chromosome. It is a result of fatty acid buildup caused by failure of peroxisomal fatty acid beta oxidation which results in the accumulation of very long chain fatty acids in tissues throughout the body.
Both parents will have to have the recessive gene for the child to show symptoms. If one parent has the gene and the other one does not, the child will be a carrier and will not show symptoms. Any mutation involving the genes that create or work the peroxisomes can lead to the development of any of the Zellweger Spectrum Disorders.
The difference between dominant and recessive inheritance patterns also plays a role in determining the chances of a child inheriting an X-linked disorder from their parentage. [citation needed] X-linked dominant disorders tend to affect females more often because they tend to be developmentally fatal in males.
The other two disorders are neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). [5] [6] Although all have a similar molecular basis for disease, Zellweger syndrome is the most severe of these three disorders. [7] Zellweger syndrome is associated with impaired neuronal migration, neuronal positioning, and brain development. [4]
Metachromatic leukodystrophy is the result of genetic defects in the enzymes associated with the cellular compartment called the lysosome. MLD is one of two leukodystophies that are also a lysosomal storage disorder .
The following is a list of genetic disorders and if known, type of mutation and for the chromosome involved. Although the parlance "disease-causing gene" is common, it is the occurrence of an abnormality in the parents that causes the impairment to develop within the child. There are over 6,000 known genetic disorders in humans.
Elivaldogene autotemcel, sold under the brand name Skysona, is a gene therapy used to treat cerebral adrenoleukodystrophy (CALD). It was developed by Bluebird Bio and was given breakthrough therapy designation by the US Food and Drug Administration in May 2018.